A Deep Neural Network for Chinese Zero Pronoun Resolution

نویسندگان

  • Qingyu Yin
  • Weinan Zhang
  • Yu Zhang
  • Ting Liu
چکیده

Existing approaches for Chinese zero pronoun resolution overlook semantic information. This is because zero pronouns have no descriptive information, which results in difficulty in explicitly capturing their semantic similarities with antecedents. Moreover, when dealing with candidate antecedents, traditional systems simply take advantage of the local information of a single candidate antecedent while failing to consider the underlying information provided by the other candidates from a global perspective. To address these weaknesses, we propose a novel zero pronoun-specific neural network, which is capable of representing zero pronouns by utilizing the contextual information at the semantic level. In addition, when dealing with candidate antecedents, a two-level candidate encoder is employed to explicitly capture both the local and global information of candidate antecedents. We conduct experiments on the Chinese portion of the OntoNotes 5.0 corpus. Experimental results show that our approach substantially outperforms the state-of-the-art method in various experimental settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Neural Network for Chinese Zero Pronoun Resolution

This paper investigates the problem of Chinese zero pronoun resolution. Most existing approaches are based on machine learning algorithms, using hand-crafted features, which is labor-intensive. Moreover, semantic information that is essential in the resolution of noun phrases has not been addressed enough by previous approaches on zero pronoun resolution. This is because that zero pronouns have...

متن کامل

Chinese Zero Pronoun Resolution with Deep Neural Networks

While unsupervised anaphoric zero pronoun (AZP) resolvers have recently been shown to rival their supervised counterparts in performance, it is relatively difficult to scale them up to reach the next level of performance due to the large amount of feature engineering efforts involved and their ineffectiveness in exploiting lexical features. To address these weaknesses, we propose a supervised a...

متن کامل

Chinese Zero Pronoun Resolution with Deep Memory Network

Existing approaches for Chinese zero pronoun resolution typically utilize only syntactical and lexical features while ignoring semantic information. The fundamental reason is that zero pronouns have no descriptive information, which brings difficulty in explicitly capturing their semantic similarities with antecedents. Meanwhile, representing zero pronouns is challenging since they are merely g...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Chinese Zero Pronoun Resolution: Some Recent Advances

We extend Zhao and Ng's (2007) Chinese anaphoric zero pronoun resolver by (1) using a richer set of features and (2) exploiting the coreference links between zero pronouns during resolution. Results on OntoNotes show that our approach significantly outperforms two state-of-the-art anaphoric zero pronoun resolvers. To our knowledge, this is the first work to report results obtained by an end-toe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017